datarobot.DeploymentRetrainingPolicy
Explore with Pulumi AI
 
Deployment Retraining Policy
Example Usage
Coming soon!
Coming soon!
Coming soon!
Coming soon!
package generated_program;
import com.pulumi.Context;
import com.pulumi.Pulumi;
import com.pulumi.core.Output;
import com.pulumi.datarobot.DeploymentRetrainingPolicy;
import com.pulumi.datarobot.DeploymentRetrainingPolicyArgs;
import com.pulumi.datarobot.inputs.DeploymentRetrainingPolicyTriggerArgs;
import com.pulumi.datarobot.inputs.DeploymentRetrainingPolicyAutopilotOptionsArgs;
import com.pulumi.datarobot.inputs.DeploymentRetrainingPolicyProjectOptionsArgs;
import com.pulumi.datarobot.inputs.DeploymentRetrainingPolicyTimeSeriesOptionsArgs;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.io.File;
import java.nio.file.Files;
import java.nio.file.Paths;
public class App {
    public static void main(String[] args) {
        Pulumi.run(App::stack);
    }
    public static void stack(Context ctx) {
        var example = new DeploymentRetrainingPolicy("example", DeploymentRetrainingPolicyArgs.builder()
            .deploymentId(datarobot_deployment.example().id())
            .description("Example Description")
            .action("create_model_package")
            .modelSelectionStrategy("custom_job")
            .featureListStrategy("informative_features")
            .projectOptionsStrategy("custom")
            .trigger(DeploymentRetrainingPolicyTriggerArgs.builder()
                .custom_job_id(datarobot_custom_job.example().id())
                .build())
            .autopilotOptions()
            .projectOptions()
            .timeSeriesOptions()
            .build());
        ctx.export("datarobotDeploymentRetrainingPolicyId", example.id());
    }
}
resources:
  example:
    type: datarobot:DeploymentRetrainingPolicy
    properties:
      deploymentId: ${datarobot_deployment.example.id}
      description: Example Description
      # Optional
      action: create_model_package
      modelSelectionStrategy: custom_job
      featureListStrategy: informative_features
      projectOptionsStrategy: custom
      trigger:
        custom_job_id: ${datarobot_custom_job.example.id}
      autopilotOptions: {}
      projectOptions: {}
      timeSeriesOptions: {}
outputs:
  datarobotDeploymentRetrainingPolicyId: ${example.id}
Create DeploymentRetrainingPolicy Resource
Resources are created with functions called constructors. To learn more about declaring and configuring resources, see Resources.
Constructor syntax
new DeploymentRetrainingPolicy(name: string, args: DeploymentRetrainingPolicyArgs, opts?: CustomResourceOptions);@overload
def DeploymentRetrainingPolicy(resource_name: str,
                               args: DeploymentRetrainingPolicyArgs,
                               opts: Optional[ResourceOptions] = None)
@overload
def DeploymentRetrainingPolicy(resource_name: str,
                               opts: Optional[ResourceOptions] = None,
                               deployment_id: Optional[str] = None,
                               description: Optional[str] = None,
                               action: Optional[str] = None,
                               autopilot_options: Optional[DeploymentRetrainingPolicyAutopilotOptionsArgs] = None,
                               feature_list_strategy: Optional[str] = None,
                               model_selection_strategy: Optional[str] = None,
                               name: Optional[str] = None,
                               project_options: Optional[DeploymentRetrainingPolicyProjectOptionsArgs] = None,
                               project_options_strategy: Optional[str] = None,
                               time_series_options: Optional[DeploymentRetrainingPolicyTimeSeriesOptionsArgs] = None,
                               trigger: Optional[DeploymentRetrainingPolicyTriggerArgs] = None)func NewDeploymentRetrainingPolicy(ctx *Context, name string, args DeploymentRetrainingPolicyArgs, opts ...ResourceOption) (*DeploymentRetrainingPolicy, error)public DeploymentRetrainingPolicy(string name, DeploymentRetrainingPolicyArgs args, CustomResourceOptions? opts = null)
public DeploymentRetrainingPolicy(String name, DeploymentRetrainingPolicyArgs args)
public DeploymentRetrainingPolicy(String name, DeploymentRetrainingPolicyArgs args, CustomResourceOptions options)
type: datarobot:DeploymentRetrainingPolicy
properties: # The arguments to resource properties.
options: # Bag of options to control resource's behavior.
Parameters
- name string
- The unique name of the resource.
- args DeploymentRetrainingPolicyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- resource_name str
- The unique name of the resource.
- args DeploymentRetrainingPolicyArgs
- The arguments to resource properties.
- opts ResourceOptions
- Bag of options to control resource's behavior.
- ctx Context
- Context object for the current deployment.
- name string
- The unique name of the resource.
- args DeploymentRetrainingPolicyArgs
- The arguments to resource properties.
- opts ResourceOption
- Bag of options to control resource's behavior.
- name string
- The unique name of the resource.
- args DeploymentRetrainingPolicyArgs
- The arguments to resource properties.
- opts CustomResourceOptions
- Bag of options to control resource's behavior.
- name String
- The unique name of the resource.
- args DeploymentRetrainingPolicyArgs
- The arguments to resource properties.
- options CustomResourceOptions
- Bag of options to control resource's behavior.
Constructor example
The following reference example uses placeholder values for all input properties.
var deploymentRetrainingPolicyResource = new Datarobot.DeploymentRetrainingPolicy("deploymentRetrainingPolicyResource", new()
{
    DeploymentId = "string",
    Description = "string",
    Action = "string",
    AutopilotOptions = new Datarobot.Inputs.DeploymentRetrainingPolicyAutopilotOptionsArgs
    {
        BlendBestModels = false,
        Mode = "string",
        RunLeakageRemovedFeatureList = false,
        ScoringCodeOnly = false,
        ShapOnlyMode = false,
    },
    FeatureListStrategy = "string",
    ModelSelectionStrategy = "string",
    Name = "string",
    ProjectOptions = new Datarobot.Inputs.DeploymentRetrainingPolicyProjectOptionsArgs
    {
        CvMethod = "string",
        HoldoutPct = 0,
        Metric = "string",
        Reps = 0,
        ValidationPct = 0,
        ValidationType = "string",
    },
    ProjectOptionsStrategy = "string",
    TimeSeriesOptions = new Datarobot.Inputs.DeploymentRetrainingPolicyTimeSeriesOptionsArgs
    {
        CalendarId = "string",
        DifferencingMethod = "string",
        ExponentiallyWeightedMovingAlpha = 0,
        Periodicities = new[]
        {
            new Datarobot.Inputs.DeploymentRetrainingPolicyTimeSeriesOptionsPeriodicityArgs
            {
                TimeSteps = 0,
                TimeUnit = "string",
            },
        },
        TreatAsExponential = "string",
    },
    Trigger = new Datarobot.Inputs.DeploymentRetrainingPolicyTriggerArgs
    {
        CustomJobId = "string",
        MinIntervalBetweenRuns = "string",
        Schedule = new Datarobot.Inputs.DeploymentRetrainingPolicyTriggerScheduleArgs
        {
            DayOfMonths = new[]
            {
                "string",
            },
            DayOfWeeks = new[]
            {
                "string",
            },
            Hours = new[]
            {
                "string",
            },
            Minutes = new[]
            {
                "string",
            },
            Months = new[]
            {
                "string",
            },
        },
        StatusDeclinesToFailing = false,
        StatusDeclinesToWarning = false,
        StatusStillInDecline = false,
        Type = "string",
    },
});
example, err := datarobot.NewDeploymentRetrainingPolicy(ctx, "deploymentRetrainingPolicyResource", &datarobot.DeploymentRetrainingPolicyArgs{
	DeploymentId: pulumi.String("string"),
	Description:  pulumi.String("string"),
	Action:       pulumi.String("string"),
	AutopilotOptions: &datarobot.DeploymentRetrainingPolicyAutopilotOptionsArgs{
		BlendBestModels:              pulumi.Bool(false),
		Mode:                         pulumi.String("string"),
		RunLeakageRemovedFeatureList: pulumi.Bool(false),
		ScoringCodeOnly:              pulumi.Bool(false),
		ShapOnlyMode:                 pulumi.Bool(false),
	},
	FeatureListStrategy:    pulumi.String("string"),
	ModelSelectionStrategy: pulumi.String("string"),
	Name:                   pulumi.String("string"),
	ProjectOptions: &datarobot.DeploymentRetrainingPolicyProjectOptionsArgs{
		CvMethod:       pulumi.String("string"),
		HoldoutPct:     pulumi.Float64(0),
		Metric:         pulumi.String("string"),
		Reps:           pulumi.Float64(0),
		ValidationPct:  pulumi.Float64(0),
		ValidationType: pulumi.String("string"),
	},
	ProjectOptionsStrategy: pulumi.String("string"),
	TimeSeriesOptions: &datarobot.DeploymentRetrainingPolicyTimeSeriesOptionsArgs{
		CalendarId:                       pulumi.String("string"),
		DifferencingMethod:               pulumi.String("string"),
		ExponentiallyWeightedMovingAlpha: pulumi.Float64(0),
		Periodicities: datarobot.DeploymentRetrainingPolicyTimeSeriesOptionsPeriodicityArray{
			&datarobot.DeploymentRetrainingPolicyTimeSeriesOptionsPeriodicityArgs{
				TimeSteps: pulumi.Int(0),
				TimeUnit:  pulumi.String("string"),
			},
		},
		TreatAsExponential: pulumi.String("string"),
	},
	Trigger: &datarobot.DeploymentRetrainingPolicyTriggerArgs{
		CustomJobId:            pulumi.String("string"),
		MinIntervalBetweenRuns: pulumi.String("string"),
		Schedule: &datarobot.DeploymentRetrainingPolicyTriggerScheduleArgs{
			DayOfMonths: pulumi.StringArray{
				pulumi.String("string"),
			},
			DayOfWeeks: pulumi.StringArray{
				pulumi.String("string"),
			},
			Hours: pulumi.StringArray{
				pulumi.String("string"),
			},
			Minutes: pulumi.StringArray{
				pulumi.String("string"),
			},
			Months: pulumi.StringArray{
				pulumi.String("string"),
			},
		},
		StatusDeclinesToFailing: pulumi.Bool(false),
		StatusDeclinesToWarning: pulumi.Bool(false),
		StatusStillInDecline:    pulumi.Bool(false),
		Type:                    pulumi.String("string"),
	},
})
var deploymentRetrainingPolicyResource = new DeploymentRetrainingPolicy("deploymentRetrainingPolicyResource", DeploymentRetrainingPolicyArgs.builder()
    .deploymentId("string")
    .description("string")
    .action("string")
    .autopilotOptions(DeploymentRetrainingPolicyAutopilotOptionsArgs.builder()
        .blendBestModels(false)
        .mode("string")
        .runLeakageRemovedFeatureList(false)
        .scoringCodeOnly(false)
        .shapOnlyMode(false)
        .build())
    .featureListStrategy("string")
    .modelSelectionStrategy("string")
    .name("string")
    .projectOptions(DeploymentRetrainingPolicyProjectOptionsArgs.builder()
        .cvMethod("string")
        .holdoutPct(0)
        .metric("string")
        .reps(0)
        .validationPct(0)
        .validationType("string")
        .build())
    .projectOptionsStrategy("string")
    .timeSeriesOptions(DeploymentRetrainingPolicyTimeSeriesOptionsArgs.builder()
        .calendarId("string")
        .differencingMethod("string")
        .exponentiallyWeightedMovingAlpha(0)
        .periodicities(DeploymentRetrainingPolicyTimeSeriesOptionsPeriodicityArgs.builder()
            .timeSteps(0)
            .timeUnit("string")
            .build())
        .treatAsExponential("string")
        .build())
    .trigger(DeploymentRetrainingPolicyTriggerArgs.builder()
        .customJobId("string")
        .minIntervalBetweenRuns("string")
        .schedule(DeploymentRetrainingPolicyTriggerScheduleArgs.builder()
            .dayOfMonths("string")
            .dayOfWeeks("string")
            .hours("string")
            .minutes("string")
            .months("string")
            .build())
        .statusDeclinesToFailing(false)
        .statusDeclinesToWarning(false)
        .statusStillInDecline(false)
        .type("string")
        .build())
    .build());
deployment_retraining_policy_resource = datarobot.DeploymentRetrainingPolicy("deploymentRetrainingPolicyResource",
    deployment_id="string",
    description="string",
    action="string",
    autopilot_options={
        "blend_best_models": False,
        "mode": "string",
        "run_leakage_removed_feature_list": False,
        "scoring_code_only": False,
        "shap_only_mode": False,
    },
    feature_list_strategy="string",
    model_selection_strategy="string",
    name="string",
    project_options={
        "cv_method": "string",
        "holdout_pct": 0,
        "metric": "string",
        "reps": 0,
        "validation_pct": 0,
        "validation_type": "string",
    },
    project_options_strategy="string",
    time_series_options={
        "calendar_id": "string",
        "differencing_method": "string",
        "exponentially_weighted_moving_alpha": 0,
        "periodicities": [{
            "time_steps": 0,
            "time_unit": "string",
        }],
        "treat_as_exponential": "string",
    },
    trigger={
        "custom_job_id": "string",
        "min_interval_between_runs": "string",
        "schedule": {
            "day_of_months": ["string"],
            "day_of_weeks": ["string"],
            "hours": ["string"],
            "minutes": ["string"],
            "months": ["string"],
        },
        "status_declines_to_failing": False,
        "status_declines_to_warning": False,
        "status_still_in_decline": False,
        "type": "string",
    })
const deploymentRetrainingPolicyResource = new datarobot.DeploymentRetrainingPolicy("deploymentRetrainingPolicyResource", {
    deploymentId: "string",
    description: "string",
    action: "string",
    autopilotOptions: {
        blendBestModels: false,
        mode: "string",
        runLeakageRemovedFeatureList: false,
        scoringCodeOnly: false,
        shapOnlyMode: false,
    },
    featureListStrategy: "string",
    modelSelectionStrategy: "string",
    name: "string",
    projectOptions: {
        cvMethod: "string",
        holdoutPct: 0,
        metric: "string",
        reps: 0,
        validationPct: 0,
        validationType: "string",
    },
    projectOptionsStrategy: "string",
    timeSeriesOptions: {
        calendarId: "string",
        differencingMethod: "string",
        exponentiallyWeightedMovingAlpha: 0,
        periodicities: [{
            timeSteps: 0,
            timeUnit: "string",
        }],
        treatAsExponential: "string",
    },
    trigger: {
        customJobId: "string",
        minIntervalBetweenRuns: "string",
        schedule: {
            dayOfMonths: ["string"],
            dayOfWeeks: ["string"],
            hours: ["string"],
            minutes: ["string"],
            months: ["string"],
        },
        statusDeclinesToFailing: false,
        statusDeclinesToWarning: false,
        statusStillInDecline: false,
        type: "string",
    },
});
type: datarobot:DeploymentRetrainingPolicy
properties:
    action: string
    autopilotOptions:
        blendBestModels: false
        mode: string
        runLeakageRemovedFeatureList: false
        scoringCodeOnly: false
        shapOnlyMode: false
    deploymentId: string
    description: string
    featureListStrategy: string
    modelSelectionStrategy: string
    name: string
    projectOptions:
        cvMethod: string
        holdoutPct: 0
        metric: string
        reps: 0
        validationPct: 0
        validationType: string
    projectOptionsStrategy: string
    timeSeriesOptions:
        calendarId: string
        differencingMethod: string
        exponentiallyWeightedMovingAlpha: 0
        periodicities:
            - timeSteps: 0
              timeUnit: string
        treatAsExponential: string
    trigger:
        customJobId: string
        minIntervalBetweenRuns: string
        schedule:
            dayOfMonths:
                - string
            dayOfWeeks:
                - string
            hours:
                - string
            minutes:
                - string
            months:
                - string
        statusDeclinesToFailing: false
        statusDeclinesToWarning: false
        statusStillInDecline: false
        type: string
DeploymentRetrainingPolicy Resource Properties
To learn more about resource properties and how to use them, see Inputs and Outputs in the Architecture and Concepts docs.
Inputs
In Python, inputs that are objects can be passed either as argument classes or as dictionary literals.
The DeploymentRetrainingPolicy resource accepts the following input properties:
- DeploymentId string
- The ID of the Deployment for the Retraining Policy.
- Description string
- The description of the Retraining Policy.
- Action string
- The the action to take on the resultant new model.
- AutopilotOptions DataRobot Deployment Retraining Policy Autopilot Options 
- Options for projects used to build new models.
- FeatureList stringStrategy 
- The feature list strategy used for modeling.
- ModelSelection stringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- Name string
- The name of the Retraining Policy.
- ProjectOptions DataRobot Deployment Retraining Policy Project Options 
- Options for projects used to build new models.
- ProjectOptions stringStrategy 
- The project option strategy used for modeling.
- TimeSeries DataOptions Robot Deployment Retraining Policy Time Series Options 
- Time Series project options used to build new models.
- Trigger
DataRobot Deployment Retraining Policy Trigger 
- Retraining policy trigger.
- DeploymentId string
- The ID of the Deployment for the Retraining Policy.
- Description string
- The description of the Retraining Policy.
- Action string
- The the action to take on the resultant new model.
- AutopilotOptions DeploymentRetraining Policy Autopilot Options Args 
- Options for projects used to build new models.
- FeatureList stringStrategy 
- The feature list strategy used for modeling.
- ModelSelection stringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- Name string
- The name of the Retraining Policy.
- ProjectOptions DeploymentRetraining Policy Project Options Args 
- Options for projects used to build new models.
- ProjectOptions stringStrategy 
- The project option strategy used for modeling.
- TimeSeries DeploymentOptions Retraining Policy Time Series Options Args 
- Time Series project options used to build new models.
- Trigger
DeploymentRetraining Policy Trigger Args 
- Retraining policy trigger.
- deploymentId String
- The ID of the Deployment for the Retraining Policy.
- description String
- The description of the Retraining Policy.
- action String
- The the action to take on the resultant new model.
- autopilotOptions DeploymentRetraining Policy Autopilot Options 
- Options for projects used to build new models.
- featureList StringStrategy 
- The feature list strategy used for modeling.
- modelSelection StringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- name String
- The name of the Retraining Policy.
- projectOptions DeploymentRetraining Policy Project Options 
- Options for projects used to build new models.
- projectOptions StringStrategy 
- The project option strategy used for modeling.
- timeSeries DeploymentOptions Retraining Policy Time Series Options 
- Time Series project options used to build new models.
- trigger
DeploymentRetraining Policy Trigger 
- Retraining policy trigger.
- deploymentId string
- The ID of the Deployment for the Retraining Policy.
- description string
- The description of the Retraining Policy.
- action string
- The the action to take on the resultant new model.
- autopilotOptions DeploymentRetraining Policy Autopilot Options 
- Options for projects used to build new models.
- featureList stringStrategy 
- The feature list strategy used for modeling.
- modelSelection stringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- name string
- The name of the Retraining Policy.
- projectOptions DeploymentRetraining Policy Project Options 
- Options for projects used to build new models.
- projectOptions stringStrategy 
- The project option strategy used for modeling.
- timeSeries DeploymentOptions Retraining Policy Time Series Options 
- Time Series project options used to build new models.
- trigger
DeploymentRetraining Policy Trigger 
- Retraining policy trigger.
- deployment_id str
- The ID of the Deployment for the Retraining Policy.
- description str
- The description of the Retraining Policy.
- action str
- The the action to take on the resultant new model.
- autopilot_options DeploymentRetraining Policy Autopilot Options Args 
- Options for projects used to build new models.
- feature_list_ strstrategy 
- The feature list strategy used for modeling.
- model_selection_ strstrategy 
- Determines how the new model is selected when the retraining policy runs.
- name str
- The name of the Retraining Policy.
- project_options DeploymentRetraining Policy Project Options Args 
- Options for projects used to build new models.
- project_options_ strstrategy 
- The project option strategy used for modeling.
- time_series_ Deploymentoptions Retraining Policy Time Series Options Args 
- Time Series project options used to build new models.
- trigger
DeploymentRetraining Policy Trigger Args 
- Retraining policy trigger.
- deploymentId String
- The ID of the Deployment for the Retraining Policy.
- description String
- The description of the Retraining Policy.
- action String
- The the action to take on the resultant new model.
- autopilotOptions Property Map
- Options for projects used to build new models.
- featureList StringStrategy 
- The feature list strategy used for modeling.
- modelSelection StringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- name String
- The name of the Retraining Policy.
- projectOptions Property Map
- Options for projects used to build new models.
- projectOptions StringStrategy 
- The project option strategy used for modeling.
- timeSeries Property MapOptions 
- Time Series project options used to build new models.
- trigger Property Map
- Retraining policy trigger.
Outputs
All input properties are implicitly available as output properties. Additionally, the DeploymentRetrainingPolicy resource produces the following output properties:
- Id string
- The provider-assigned unique ID for this managed resource.
- Id string
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
- id string
- The provider-assigned unique ID for this managed resource.
- id str
- The provider-assigned unique ID for this managed resource.
- id String
- The provider-assigned unique ID for this managed resource.
Look up Existing DeploymentRetrainingPolicy Resource
Get an existing DeploymentRetrainingPolicy resource’s state with the given name, ID, and optional extra properties used to qualify the lookup.
public static get(name: string, id: Input<ID>, state?: DeploymentRetrainingPolicyState, opts?: CustomResourceOptions): DeploymentRetrainingPolicy@staticmethod
def get(resource_name: str,
        id: str,
        opts: Optional[ResourceOptions] = None,
        action: Optional[str] = None,
        autopilot_options: Optional[DeploymentRetrainingPolicyAutopilotOptionsArgs] = None,
        deployment_id: Optional[str] = None,
        description: Optional[str] = None,
        feature_list_strategy: Optional[str] = None,
        model_selection_strategy: Optional[str] = None,
        name: Optional[str] = None,
        project_options: Optional[DeploymentRetrainingPolicyProjectOptionsArgs] = None,
        project_options_strategy: Optional[str] = None,
        time_series_options: Optional[DeploymentRetrainingPolicyTimeSeriesOptionsArgs] = None,
        trigger: Optional[DeploymentRetrainingPolicyTriggerArgs] = None) -> DeploymentRetrainingPolicyfunc GetDeploymentRetrainingPolicy(ctx *Context, name string, id IDInput, state *DeploymentRetrainingPolicyState, opts ...ResourceOption) (*DeploymentRetrainingPolicy, error)public static DeploymentRetrainingPolicy Get(string name, Input<string> id, DeploymentRetrainingPolicyState? state, CustomResourceOptions? opts = null)public static DeploymentRetrainingPolicy get(String name, Output<String> id, DeploymentRetrainingPolicyState state, CustomResourceOptions options)resources:  _:    type: datarobot:DeploymentRetrainingPolicy    get:      id: ${id}- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- resource_name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- name
- The unique name of the resulting resource.
- id
- The unique provider ID of the resource to lookup.
- state
- Any extra arguments used during the lookup.
- opts
- A bag of options that control this resource's behavior.
- Action string
- The the action to take on the resultant new model.
- AutopilotOptions DataRobot Deployment Retraining Policy Autopilot Options 
- Options for projects used to build new models.
- DeploymentId string
- The ID of the Deployment for the Retraining Policy.
- Description string
- The description of the Retraining Policy.
- FeatureList stringStrategy 
- The feature list strategy used for modeling.
- ModelSelection stringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- Name string
- The name of the Retraining Policy.
- ProjectOptions DataRobot Deployment Retraining Policy Project Options 
- Options for projects used to build new models.
- ProjectOptions stringStrategy 
- The project option strategy used for modeling.
- TimeSeries DataOptions Robot Deployment Retraining Policy Time Series Options 
- Time Series project options used to build new models.
- Trigger
DataRobot Deployment Retraining Policy Trigger 
- Retraining policy trigger.
- Action string
- The the action to take on the resultant new model.
- AutopilotOptions DeploymentRetraining Policy Autopilot Options Args 
- Options for projects used to build new models.
- DeploymentId string
- The ID of the Deployment for the Retraining Policy.
- Description string
- The description of the Retraining Policy.
- FeatureList stringStrategy 
- The feature list strategy used for modeling.
- ModelSelection stringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- Name string
- The name of the Retraining Policy.
- ProjectOptions DeploymentRetraining Policy Project Options Args 
- Options for projects used to build new models.
- ProjectOptions stringStrategy 
- The project option strategy used for modeling.
- TimeSeries DeploymentOptions Retraining Policy Time Series Options Args 
- Time Series project options used to build new models.
- Trigger
DeploymentRetraining Policy Trigger Args 
- Retraining policy trigger.
- action String
- The the action to take on the resultant new model.
- autopilotOptions DeploymentRetraining Policy Autopilot Options 
- Options for projects used to build new models.
- deploymentId String
- The ID of the Deployment for the Retraining Policy.
- description String
- The description of the Retraining Policy.
- featureList StringStrategy 
- The feature list strategy used for modeling.
- modelSelection StringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- name String
- The name of the Retraining Policy.
- projectOptions DeploymentRetraining Policy Project Options 
- Options for projects used to build new models.
- projectOptions StringStrategy 
- The project option strategy used for modeling.
- timeSeries DeploymentOptions Retraining Policy Time Series Options 
- Time Series project options used to build new models.
- trigger
DeploymentRetraining Policy Trigger 
- Retraining policy trigger.
- action string
- The the action to take on the resultant new model.
- autopilotOptions DeploymentRetraining Policy Autopilot Options 
- Options for projects used to build new models.
- deploymentId string
- The ID of the Deployment for the Retraining Policy.
- description string
- The description of the Retraining Policy.
- featureList stringStrategy 
- The feature list strategy used for modeling.
- modelSelection stringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- name string
- The name of the Retraining Policy.
- projectOptions DeploymentRetraining Policy Project Options 
- Options for projects used to build new models.
- projectOptions stringStrategy 
- The project option strategy used for modeling.
- timeSeries DeploymentOptions Retraining Policy Time Series Options 
- Time Series project options used to build new models.
- trigger
DeploymentRetraining Policy Trigger 
- Retraining policy trigger.
- action str
- The the action to take on the resultant new model.
- autopilot_options DeploymentRetraining Policy Autopilot Options Args 
- Options for projects used to build new models.
- deployment_id str
- The ID of the Deployment for the Retraining Policy.
- description str
- The description of the Retraining Policy.
- feature_list_ strstrategy 
- The feature list strategy used for modeling.
- model_selection_ strstrategy 
- Determines how the new model is selected when the retraining policy runs.
- name str
- The name of the Retraining Policy.
- project_options DeploymentRetraining Policy Project Options Args 
- Options for projects used to build new models.
- project_options_ strstrategy 
- The project option strategy used for modeling.
- time_series_ Deploymentoptions Retraining Policy Time Series Options Args 
- Time Series project options used to build new models.
- trigger
DeploymentRetraining Policy Trigger Args 
- Retraining policy trigger.
- action String
- The the action to take on the resultant new model.
- autopilotOptions Property Map
- Options for projects used to build new models.
- deploymentId String
- The ID of the Deployment for the Retraining Policy.
- description String
- The description of the Retraining Policy.
- featureList StringStrategy 
- The feature list strategy used for modeling.
- modelSelection StringStrategy 
- Determines how the new model is selected when the retraining policy runs.
- name String
- The name of the Retraining Policy.
- projectOptions Property Map
- Options for projects used to build new models.
- projectOptions StringStrategy 
- The project option strategy used for modeling.
- timeSeries Property MapOptions 
- Time Series project options used to build new models.
- trigger Property Map
- Retraining policy trigger.
Supporting Types
DeploymentRetrainingPolicyAutopilotOptions, DeploymentRetrainingPolicyAutopilotOptionsArgs          
- BlendBest boolModels 
- Blend best models during Autopilot run. This option is not supported in SHAP-only mode.
- Mode string
- The autopiltot mode.
- RunLeakage boolRemoved Feature List 
- Run Autopilot on Leakage Removed feature list (if exists).
- ScoringCode boolOnly 
- Keep only models that can be converted to scorable java code during Autopilot run.
- ShapOnly boolMode 
- Include only models with SHAP value support.
- BlendBest boolModels 
- Blend best models during Autopilot run. This option is not supported in SHAP-only mode.
- Mode string
- The autopiltot mode.
- RunLeakage boolRemoved Feature List 
- Run Autopilot on Leakage Removed feature list (if exists).
- ScoringCode boolOnly 
- Keep only models that can be converted to scorable java code during Autopilot run.
- ShapOnly boolMode 
- Include only models with SHAP value support.
- blendBest BooleanModels 
- Blend best models during Autopilot run. This option is not supported in SHAP-only mode.
- mode String
- The autopiltot mode.
- runLeakage BooleanRemoved Feature List 
- Run Autopilot on Leakage Removed feature list (if exists).
- scoringCode BooleanOnly 
- Keep only models that can be converted to scorable java code during Autopilot run.
- shapOnly BooleanMode 
- Include only models with SHAP value support.
- blendBest booleanModels 
- Blend best models during Autopilot run. This option is not supported in SHAP-only mode.
- mode string
- The autopiltot mode.
- runLeakage booleanRemoved Feature List 
- Run Autopilot on Leakage Removed feature list (if exists).
- scoringCode booleanOnly 
- Keep only models that can be converted to scorable java code during Autopilot run.
- shapOnly booleanMode 
- Include only models with SHAP value support.
- blend_best_ boolmodels 
- Blend best models during Autopilot run. This option is not supported in SHAP-only mode.
- mode str
- The autopiltot mode.
- run_leakage_ boolremoved_ feature_ list 
- Run Autopilot on Leakage Removed feature list (if exists).
- scoring_code_ boolonly 
- Keep only models that can be converted to scorable java code during Autopilot run.
- shap_only_ boolmode 
- Include only models with SHAP value support.
- blendBest BooleanModels 
- Blend best models during Autopilot run. This option is not supported in SHAP-only mode.
- mode String
- The autopiltot mode.
- runLeakage BooleanRemoved Feature List 
- Run Autopilot on Leakage Removed feature list (if exists).
- scoringCode BooleanOnly 
- Keep only models that can be converted to scorable java code during Autopilot run.
- shapOnly BooleanMode 
- Include only models with SHAP value support.
DeploymentRetrainingPolicyProjectOptions, DeploymentRetrainingPolicyProjectOptionsArgs          
- CvMethod string
- The partitioning method for projects used to build new models.
- HoldoutPct double
- The percentage of dataset to assign to holdout set in projects used to build new models.
- Metric string
- The model selection metric in projects used to build new models.
- Reps double
- The number of cross validation folds to use for projects used to build new models.
- ValidationPct double
- The percentage of dataset to assign to validation set in projects used to build new models.
- ValidationType string
- The validation type for projects used to build new models.
- CvMethod string
- The partitioning method for projects used to build new models.
- HoldoutPct float64
- The percentage of dataset to assign to holdout set in projects used to build new models.
- Metric string
- The model selection metric in projects used to build new models.
- Reps float64
- The number of cross validation folds to use for projects used to build new models.
- ValidationPct float64
- The percentage of dataset to assign to validation set in projects used to build new models.
- ValidationType string
- The validation type for projects used to build new models.
- cvMethod String
- The partitioning method for projects used to build new models.
- holdoutPct Double
- The percentage of dataset to assign to holdout set in projects used to build new models.
- metric String
- The model selection metric in projects used to build new models.
- reps Double
- The number of cross validation folds to use for projects used to build new models.
- validationPct Double
- The percentage of dataset to assign to validation set in projects used to build new models.
- validationType String
- The validation type for projects used to build new models.
- cvMethod string
- The partitioning method for projects used to build new models.
- holdoutPct number
- The percentage of dataset to assign to holdout set in projects used to build new models.
- metric string
- The model selection metric in projects used to build new models.
- reps number
- The number of cross validation folds to use for projects used to build new models.
- validationPct number
- The percentage of dataset to assign to validation set in projects used to build new models.
- validationType string
- The validation type for projects used to build new models.
- cv_method str
- The partitioning method for projects used to build new models.
- holdout_pct float
- The percentage of dataset to assign to holdout set in projects used to build new models.
- metric str
- The model selection metric in projects used to build new models.
- reps float
- The number of cross validation folds to use for projects used to build new models.
- validation_pct float
- The percentage of dataset to assign to validation set in projects used to build new models.
- validation_type str
- The validation type for projects used to build new models.
- cvMethod String
- The partitioning method for projects used to build new models.
- holdoutPct Number
- The percentage of dataset to assign to holdout set in projects used to build new models.
- metric String
- The model selection metric in projects used to build new models.
- reps Number
- The number of cross validation folds to use for projects used to build new models.
- validationPct Number
- The percentage of dataset to assign to validation set in projects used to build new models.
- validationType String
- The validation type for projects used to build new models.
DeploymentRetrainingPolicyTimeSeriesOptions, DeploymentRetrainingPolicyTimeSeriesOptionsArgs            
- CalendarId string
- The ID of the calendar to be used in this project.
- DifferencingMethod string
- For time series projects only. Used to specify which differencing method to apply if the data is stationary. For classification problems simple and seasonal are not allowed. Parameter periodicities must be specified if seasonal is chosen. Defaults to auto.
- ExponentiallyWeighted doubleMoving Alpha 
- Discount factor (alpha) used for exponentially weighted moving features.
- Periodicities
List<DataRobot Deployment Retraining Policy Time Series Options Periodicity> 
- A list of periodicities for time series projects only. For classification problems periodicities are not allowed. If this is provided, parameter 'differencing*method' will default to 'seasonal' if not provided or 'auto'.
- TreatAs stringExponential 
- For time series projects only. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. For classification problems always is not allowed. Defaults to auto.
- CalendarId string
- The ID of the calendar to be used in this project.
- DifferencingMethod string
- For time series projects only. Used to specify which differencing method to apply if the data is stationary. For classification problems simple and seasonal are not allowed. Parameter periodicities must be specified if seasonal is chosen. Defaults to auto.
- ExponentiallyWeighted float64Moving Alpha 
- Discount factor (alpha) used for exponentially weighted moving features.
- Periodicities
[]DeploymentRetraining Policy Time Series Options Periodicity 
- A list of periodicities for time series projects only. For classification problems periodicities are not allowed. If this is provided, parameter 'differencing*method' will default to 'seasonal' if not provided or 'auto'.
- TreatAs stringExponential 
- For time series projects only. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. For classification problems always is not allowed. Defaults to auto.
- calendarId String
- The ID of the calendar to be used in this project.
- differencingMethod String
- For time series projects only. Used to specify which differencing method to apply if the data is stationary. For classification problems simple and seasonal are not allowed. Parameter periodicities must be specified if seasonal is chosen. Defaults to auto.
- exponentiallyWeighted DoubleMoving Alpha 
- Discount factor (alpha) used for exponentially weighted moving features.
- periodicities
List<DeploymentRetraining Policy Time Series Options Periodicity> 
- A list of periodicities for time series projects only. For classification problems periodicities are not allowed. If this is provided, parameter 'differencing*method' will default to 'seasonal' if not provided or 'auto'.
- treatAs StringExponential 
- For time series projects only. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. For classification problems always is not allowed. Defaults to auto.
- calendarId string
- The ID of the calendar to be used in this project.
- differencingMethod string
- For time series projects only. Used to specify which differencing method to apply if the data is stationary. For classification problems simple and seasonal are not allowed. Parameter periodicities must be specified if seasonal is chosen. Defaults to auto.
- exponentiallyWeighted numberMoving Alpha 
- Discount factor (alpha) used for exponentially weighted moving features.
- periodicities
DeploymentRetraining Policy Time Series Options Periodicity[] 
- A list of periodicities for time series projects only. For classification problems periodicities are not allowed. If this is provided, parameter 'differencing*method' will default to 'seasonal' if not provided or 'auto'.
- treatAs stringExponential 
- For time series projects only. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. For classification problems always is not allowed. Defaults to auto.
- calendar_id str
- The ID of the calendar to be used in this project.
- differencing_method str
- For time series projects only. Used to specify which differencing method to apply if the data is stationary. For classification problems simple and seasonal are not allowed. Parameter periodicities must be specified if seasonal is chosen. Defaults to auto.
- exponentially_weighted_ floatmoving_ alpha 
- Discount factor (alpha) used for exponentially weighted moving features.
- periodicities
Sequence[DeploymentRetraining Policy Time Series Options Periodicity] 
- A list of periodicities for time series projects only. For classification problems periodicities are not allowed. If this is provided, parameter 'differencing*method' will default to 'seasonal' if not provided or 'auto'.
- treat_as_ strexponential 
- For time series projects only. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. For classification problems always is not allowed. Defaults to auto.
- calendarId String
- The ID of the calendar to be used in this project.
- differencingMethod String
- For time series projects only. Used to specify which differencing method to apply if the data is stationary. For classification problems simple and seasonal are not allowed. Parameter periodicities must be specified if seasonal is chosen. Defaults to auto.
- exponentiallyWeighted NumberMoving Alpha 
- Discount factor (alpha) used for exponentially weighted moving features.
- periodicities List<Property Map>
- A list of periodicities for time series projects only. For classification problems periodicities are not allowed. If this is provided, parameter 'differencing*method' will default to 'seasonal' if not provided or 'auto'.
- treatAs StringExponential 
- For time series projects only. Used to specify whether to treat data as exponential trend and apply transformations like log-transform. For classification problems always is not allowed. Defaults to auto.
DeploymentRetrainingPolicyTimeSeriesOptionsPeriodicity, DeploymentRetrainingPolicyTimeSeriesOptionsPeriodicityArgs              
- time_steps int
- The number of time steps.
- time_unit str
- The time unit or ROW if windowsBasisUnit is ROW
DeploymentRetrainingPolicyTrigger, DeploymentRetrainingPolicyTriggerArgs        
- CustomJob stringId 
- Custom job ID for the retraining policy.
- MinInterval stringBetween Runs 
- Minimal interval between policy runs in ISO 8601 duration string.
- Schedule
DataRobot Deployment Retraining Policy Trigger Schedule 
- Schedule for the retraining policy.
- StatusDeclines boolTo Failing 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to failing.
- StatusDeclines boolTo Warning 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to warning.
- StatusStill boolIn Decline 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status still in decline.
- Type string
- Type of retraining policy trigger.
- CustomJob stringId 
- Custom job ID for the retraining policy.
- MinInterval stringBetween Runs 
- Minimal interval between policy runs in ISO 8601 duration string.
- Schedule
DeploymentRetraining Policy Trigger Schedule 
- Schedule for the retraining policy.
- StatusDeclines boolTo Failing 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to failing.
- StatusDeclines boolTo Warning 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to warning.
- StatusStill boolIn Decline 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status still in decline.
- Type string
- Type of retraining policy trigger.
- customJob StringId 
- Custom job ID for the retraining policy.
- minInterval StringBetween Runs 
- Minimal interval between policy runs in ISO 8601 duration string.
- schedule
DeploymentRetraining Policy Trigger Schedule 
- Schedule for the retraining policy.
- statusDeclines BooleanTo Failing 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to failing.
- statusDeclines BooleanTo Warning 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to warning.
- statusStill BooleanIn Decline 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status still in decline.
- type String
- Type of retraining policy trigger.
- customJob stringId 
- Custom job ID for the retraining policy.
- minInterval stringBetween Runs 
- Minimal interval between policy runs in ISO 8601 duration string.
- schedule
DeploymentRetraining Policy Trigger Schedule 
- Schedule for the retraining policy.
- statusDeclines booleanTo Failing 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to failing.
- statusDeclines booleanTo Warning 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to warning.
- statusStill booleanIn Decline 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status still in decline.
- type string
- Type of retraining policy trigger.
- custom_job_ strid 
- Custom job ID for the retraining policy.
- min_interval_ strbetween_ runs 
- Minimal interval between policy runs in ISO 8601 duration string.
- schedule
DeploymentRetraining Policy Trigger Schedule 
- Schedule for the retraining policy.
- status_declines_ boolto_ failing 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to failing.
- status_declines_ boolto_ warning 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to warning.
- status_still_ boolin_ decline 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status still in decline.
- type str
- Type of retraining policy trigger.
- customJob StringId 
- Custom job ID for the retraining policy.
- minInterval StringBetween Runs 
- Minimal interval between policy runs in ISO 8601 duration string.
- schedule Property Map
- Schedule for the retraining policy.
- statusDeclines BooleanTo Failing 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to failing.
- statusDeclines BooleanTo Warning 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status declines to warning.
- statusStill BooleanIn Decline 
- Identifies when trigger type is based on deployment a health status, whether the policy will run when health status still in decline.
- type String
- Type of retraining policy trigger.
DeploymentRetrainingPolicyTriggerSchedule, DeploymentRetrainingPolicyTriggerScheduleArgs          
- DayOf List<string>Months 
- Days of the month when the job will run.
- DayOf List<string>Weeks 
- Days of the week when the job will run.
- Hours List<string>
- Hours of the day when the job will run.
- Minutes List<string>
- Minutes of the day when the job will run.
- Months List<string>
- Months of the year when the job will run.
- DayOf []stringMonths 
- Days of the month when the job will run.
- DayOf []stringWeeks 
- Days of the week when the job will run.
- Hours []string
- Hours of the day when the job will run.
- Minutes []string
- Minutes of the day when the job will run.
- Months []string
- Months of the year when the job will run.
- dayOf List<String>Months 
- Days of the month when the job will run.
- dayOf List<String>Weeks 
- Days of the week when the job will run.
- hours List<String>
- Hours of the day when the job will run.
- minutes List<String>
- Minutes of the day when the job will run.
- months List<String>
- Months of the year when the job will run.
- dayOf string[]Months 
- Days of the month when the job will run.
- dayOf string[]Weeks 
- Days of the week when the job will run.
- hours string[]
- Hours of the day when the job will run.
- minutes string[]
- Minutes of the day when the job will run.
- months string[]
- Months of the year when the job will run.
- day_of_ Sequence[str]months 
- Days of the month when the job will run.
- day_of_ Sequence[str]weeks 
- Days of the week when the job will run.
- hours Sequence[str]
- Hours of the day when the job will run.
- minutes Sequence[str]
- Minutes of the day when the job will run.
- months Sequence[str]
- Months of the year when the job will run.
- dayOf List<String>Months 
- Days of the month when the job will run.
- dayOf List<String>Weeks 
- Days of the week when the job will run.
- hours List<String>
- Hours of the day when the job will run.
- minutes List<String>
- Minutes of the day when the job will run.
- months List<String>
- Months of the year when the job will run.
Package Details
- Repository
- datarobot datarobot-community/pulumi-datarobot
- License
- Apache-2.0
- Notes
- This Pulumi package is based on the datarobotTerraform Provider.
